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AbstncL We present thWrctical mulls  for the interferenoc CfieCLr W e e n  solilons and 
two-magnon  SECS in the classical sine-Gordan model. We alculate the dynamical 
longitudinal slmclure faclor where the hvo-magnon p " s y s  give an imponant "i- 
bution lo the central peak We mmparc our mulls with &sling numerical simulalion 
dam. 

1. Introduclion 

The classical properties of ferromagnetic linear chains, including the soliton fea- 
tures, the dynamics and the thermodynamics are important subjects of theoretical 
and experimental studies. The ferromagnet CsNiF, is one of the best-studied quasi- 
onedimensional (ID) magnetic systems (Steiner and Bishop 1986). Its magnetic 
properties have been studied by different experimental techniques, as well as by 
means of different theoretical approaches. Central peak behaviour in the inelastic 
neutron scattering results for this compound in a magnetic Eeld (Kjems and Steiner 
1978, Steiner er a2 1983) first suggested that solitons were present in this system. A 
theoretical examination of a single classical easy-plane ferromagnet described by the 
Hamiltonian 

N = -23 c S n . S , , + ,  + A (Si)' - g p B H  S: 
n n n 

was made by mapping it, in the low temperature limif, onto the sine-Gordon model 
(Mikesla 1978) whose dynamical properties are well known. The comparison between 
theory and experiment was ambiguous because of the differences in the physical and 
theoretical Hamiltonians, and because of the uncertainty in the validity range of the 
theory. 

In order to interpret theoretically the available neutron scattering data we have 
to calculate the dynamical correlation functions SaQ(q ,w)  (a = +,y, z). The trans- 
verse component SYY(q,w) shows spin-wave peaks and, with increasing temperature, 
a Gaussian central peak develops, signalling the presence of solitons. The theory 
for this component consistently describes the experimental findings. The longitudinal 
component Szz(q,w) is expected to be more complicated since both solitons and 
two-spin-wave processes can be expected to play a role in the same region of the 
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spectrum. The simultaneous creation and annihilation of two-spin-waves results in a 
contribution to the cross section around zero energy transfer producing a central peak 
(CP) in the longitudinal component. However sineGordon theory also predicts a CP 
due to scattering from a gas of thermally activated solitons, and particular empha- 
sis must then be placed on the experimental separation of the contributions. There 
are experimental results that agree quantitatively with soliton prediction while others 
agree better with the two-spin-wave theory (Steiner et d 1983, k i t e r  1981). For 
instance, it has been observed that at small wavenumber q the CP shape is dominated 
by a narrow Gaussian central peak, while at large q the broad two-spin-wave cross 
section becomes dominant. Therefore, we have in the energy width of the CP at small 
q a behaviour consistent with the expectation of soliton theory, whereas at large q the 
widths are more consistent with two-spin-wave theory, suggesting that these processes 
dominate here. So, neither of the theories can give a consistent description of all 
results. The observations for .Szz(q,w) cannot be explained by one of the theories 
alone and therefore seem to indicate that we observe a mixture of the contributions, 
whose weights wry, particularly with q and also with temperature T. 

The discrepancies between theory and experiment could have several causes; for 
instance, differences between physical systems and theoretical models, quantum cor- 
rections and finite size effects. 'la overcome some of these complications Gerling 
and Landau (1990) performed computer simulation in the cfmsicuf planar model and 
found, in general, excellent qualitative agreement with the theoretical predictions. 
However, they also observed some quantitative differences in Srr(q,w)  between 
the results of the simulation and of the theoretical predictions, showing clearly that 
quantum corrections alone cannot account for the differences between theory and 
experiment 

Thus we see that, in order to understand the dynamics of the system described 
by Hamiltonian (l.l), more theoretical work should be done. lb help attain this goal 
we will study in this paper the interference effects between solitons and two-magnon 
processes in the sine-Gordon model. This interaction has been neglected so far 
in theoretical calculations presented in the literature. Our work is an extension of 
that of Allroth and Mikeska (1981) who investigated the lowest order corrections to 
the non-interacting soliton-magnon picture. We will concentrate on the dynamical 
longitudinal structure factor S==(Q,W), because it is in this term that the two-magnon 
processes are important and where some controversy still remains. We will consider 
a sineGordon chain and include, in our treatment, terms up to second order in 
temperature. 

2. Soliton-magnon interference effects in the dynamical longitudinal structure factor 

The classical sineGordon chain is defined by the Hamiltonian density 

We are interested in the following dynamical structure factor 
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where 

gZZ(z, t )  = (cos $(z,  t )  cos + ( O , O ) ) .  (23) 

For an investigation of the influence of the soliton-magnon interference on the zeroth 
order magnon and soliton peaks, we describe the field 4 as a Linear superposition of 
N solitons and antisolitons and the real part of a general magnon solution (Allroth 
and Mikeska 1981): 

N 

n=l 

where 

(25) 

and wq = C J ~  . Here 2 means that we are taking the real part of the 
function. Using the procedure adopted by Allroth and h4ikeska (1981) up to fourth 
order in magnon amplitude, we have 

where we have defined 

Here we are only interested in those terms that have not been considered by Allroth 
and Mikesla (1981). These terms are 

+6R2(z,t)R2(0,0)] 

(2.8) 

and 

[R3(z,t)R(0,0) + R ( ~ , t ) R ~ ( 0 , 0 ) ] ~ s i n + ~ ~ ~ ( z , t )  
n 

x sin d:o,(~,~)). P.9) 



m tanh(mz,,) } + arctan ( mtanh(m(z-w,f -zon)) 
k 

(2 13) 

(214) 

(215) 

&.-(z, t )  = arctan 

The averages in (2.11) have been calculated by Allroth and Mikeska (1981) and are 

(1A,12) = 2 / P L  ( k 2  + m2) 

(A:( z. t ) ) N  = 1 - 4nm/(m2 + k z )  

where p-' is the temperature measured in units of E0/)sB, and L is the chain length, 

and 

(Ak,(Z,t)Ak,(O,O) exp (i4kh(z,t)))N = exp ( -4k ) lZ l  - s (k ) l t l+  i D ( k ) k z )  

where n is the soliton density given by n = 4 m m e x p ( - 8 p m )  and 

r ( k )  = 4m2n/(mz + k z )  

s ( k )  = ( 1 / f i ) Z m 2 n e / ( m 2  + k Z )  

D ( k )  = 4mn/(m2 + k'). 

Fourier transforming we obtain 

1 d k  dk' p(k)p(k ' )  
(m2 + k 2 )  (m2 + k'2) A l ( ( l , W )  = - 

1 
m2 + ' {  ( l - m 2 + k Z  ) (1- 4nm 
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where 

b(k,&') = s ( k ) + s ( k ' )  (222) 

B, = 1 + D ( k )  (223) 

and the density p ( & )  of magnon states in &-space is (Allroth and Mikeska 1981) 

p ( k )  = - 1- 4nm ).  
2a ( m 2 + k 2  

The term in 6(q)6(w) modifies the intensity of the B r a g  peak, while the other 
terms modify the two-magnon peaks. In the non-interacting case we have a step-like 
two-spin-wave difference process central peak and a second peak, due to two-sph- 
wave processes, that begins with a square root singularity at the threshold frequency 
2wqlZ. In addition, the width of the central peak depends on the wavevector but not 
on temperature. The interference effects between solitons and magnons remove the 
singularity occurring in the non-interacting case and lead to a temperature depen- 
dence for the width of the central peak. 

For the A, term we have 

x (A:,( z 9 t)A:,,( z 7 t )  + A:, (2, t )  Aktn (o,o)2)). (225) 

The average in the soliton term is calculated over the possible soliton positions and 
velocities. Using cos + ( F )  = 1 - 2sech2(m[), where < = z - ut - zo, and (212) we 
obtain, after Fburier transformation, 

1 
m2 + k2 m2 + kt2 +c 

where we have defined 

B = (mZ + q 2 ) / 3  and C = (4' + 4mZ)(13q2 -2m2)/360.  (22'1) 

In (2.26) S&T,o(q,w) is the non-interacting soliton contribution to S z z ( q , w )  which 
is given by 
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where a = 4 p m / c 2  . Performing the k,k"-summation in (2.26) we arrive at the 
following inelastic soliton contribution of order T2 to the longitudinal structure factor 

(2.30) 

x ( 2 m 2 -  kk')+(k+k')lQ'I[(3mZ-2kk')-?(Q*'+4m2) 1 
- 5(3m2 - 2kk') (Q*' + 4 m Z )  + A( Q*2 + 4 m Z ) 2  

+ ~ ( k + k ' ) Z Q * 2 - [ m Z ( k f k ' ) 2 + 2 ( m Z - k k ' ) ( k +  k')m2/IQ'I 

- m 2 ( k +  k')(Q'' +4mz)/31Q'1]tanh(~IQ*l/m)} 

+ ( ~ k - + - - ~ k , k * - k ) + ( ~ k ,  - -* -~+ ,k '+ -k ' )  

+ ( W k  - - , - W k , W k , ~ - - W k ' , k - - k , k ' d - k ' )  1 (231) 

where Q' = q + k + k' and n = w + wk + wk,.  'Ibis term gives the O ( T 2 )  soliton 
contribution to the two-magnon process peak. 

Let us now consider G,( z ,  t). We have 

N 
G , ( Z ,  1) = -qc ~ ( I A ~ ~ ~ ) ( I A ~ , I ? ) ~  {ei(ks-Wkl) } (AL"(O,O) 

k kg 

x Ak,,(z, t)Akn(O,O)eimi"(z~r)sin '#ro,(z, t )  sin #o,(O,O)). (2.32) 

Performing the average, bu r i e r  aansforming, and summing over k' we obtain 

-- IiZ ma -I- 
X (ma - Q" +2klQ'1)(4klQfI + 3mZ - Q2)  48mZ Q 2  
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where Q' = q + k, R' = w + wk and 

K ,  = Z(m - 2n) tan-' (rr/m) - 4anm/(m2 + x 2 )  (234) 

0.12 

h 

3 

v) 

&0.08 
U 

K,  = (m - 3n) tan-' (r/m) + nm(m - 4n)/(mz + r2) 
- snm(m2 - na)/(m2 + n')'. (235) 

- 
In (2.33), S;y,,(q,w) is the non-interacting soliton mntribution to SYY(q,w); its 
expression can be obtained from (2.28) if sinh-'(x) is replaced by cosh-'(+). 
G, (q ,w)  contributes to the magnon peak to order (Tz).  It is an easy task to 
integrate (2.33) over frequency because only S~~t , (Q ' ,R ' )  depends on the frequency 
w. For qn > 2m, the integrand Will be sharply peaked around k =.-q and we can 
get an estimate of the magnon intensity as 

. 

- 

9a 1 
4P2m6 q2 + m2 GAq) = - 

T=.4J 

i 
0 . 0 4 b  

. .--: 
1.5 

0.00 
0.0 0.5 1 .o 

W 

Flgure 1. S S ( q , w )  (full line) as a function of Y fcr temperature T = 0.45, magnetic 
field h = 0.1 3, and waveveclor qa = n/8 .  (a) representr the non-interacting soliton 
mntribulion S;;,,;@) b the sum of the soliton non-interacting mnlribution and the 
salilon-magnon intemclion up to the order calculated by Allroth and Mikaka; (c) b the 
two-magnon mnlribulion that has k e n  obtained in this worL 

3. Conclusion 

In the last section we calculated, using the approach of Nlroth and Mikeska (1981) all 
corrections to order T2 due to interference effects between solitons and magnons, to 
the longitudinal dynamical structure factor in the classical sine-Gordon-like magnetic 
chain. Figures I and 2 give the S z s ( q , w )  spectra (full line) obtained for q = n / 8  
at T / J  = 0.4 and T/J = 0.8, respectively. Keeping in mind (as discussed in 
section 1) that the most important corrections are the ones for the central peak 
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0.4 . 
‘.{a) 

0.0 0.5 1 .o 1.5 w 
P i y m  Z Ssz(g ,w)  (full tine) as a function of w for tempenrrure T = 0.83. mag- 
nelic Beld h = 0.1 J ,  and wvwedor qa = r / 8 .  (a), @) and (c) represen1 prlial 
contributions as explained in @pure 1. 

since this is where discrepancies between theory and experiment have been reported 
(Steiner and Bishop 1986), we have not included the contributions related to one- 
magnon peaks in our numerical calculations. The soliton non-interacting contribution 
is given by curves (a), note its dependence on temperature and the drastic reduction 
(curves (b): S&T,,(q,w) + soliton-magnon interaction as calculated by Allroth and 
Mikeska(l981)) it suffers when the magnon interaction is taken into account. Curves 
(c) represent the contribution due to two-magnon processes as given by (ZZO), (229) 
and (231); the singularily predicted to occur at (W - 2w,,2) when the soliton effect 
on two-magnon processes is not considered is now completely removed. We also note 
that our results lead to a temperature dependent Width for this contribution. The 
full lines shown in figures 1 and 2 correspond to the sum of curves (b) and (c); the 
contribution due to two-magnon processes is always dominant. 

In figure 3 we present the half-width at half height of the central peak for 
Srz( q ,  w )  as a function of temperature, comparing our theoretical calculations With 
simulation data from Gerling and Landau (1990). Also shown in figure 3 are the 
non-interacting soliton and the pure two-magnon contributions. As we can see, the 
longitudinal correlation function shows a crossover from a two-spin-wave process, 
dominating the low temperature region, to a soliton process, at higher temperature. 
Our results are in much better agreement With the simulation data than the non- 
interacting theory: two-spin-wave and soliton processes. The remaining discrepancy 
can be attributed to out-of-plane effects present in Gerling and Landau’s simulations. 

In conclusion we emphasize that this is the first time that soliton-magnon inter- 
actions up to second-order terms in temperature are taken into account Of course, 
since our theory is an extension of the work of Allroth and Mikeska (1981) it suffers 
from the same limitations: for instance, lack of complete self-consistency. Also, the 
theory presented here was developed for the XY model. Its application to a realistic 
magnetic chain (such as that used to describe ON&) would require the inclusion 
of other effects such as quantum corrections, out-of-plane motion and discreteness 
effects. These effects have been discussed recently by Mikeska and Steiner (1991) 
in an excellent review paper. Our work complements their discussion showing that, 
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02 (14 0.6 a8 
T I J  

3 

Flgurr 3. ?he half-width a1 half-height OC the central peak for S”(q, w )  as a function 
of temperature for h = 0.1 J and q = ?r/8. The do& (connened Ly a guide line) are 
the raul& of our theoly. The full lines are the EUI& for the two-spin-wave diffemce 
pmeess and for the central roliton peak. Also shown are lhe computer simulation data 
obtained Gum Gerling and Landau (1990). 

besides the mnaibutions pointed out in their work Wikeska and Steiner 1991), the 
second-order soliton-magnon interaction must be taken into account 
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